Use Case

Application of Copilot in Manufacturing Supply Chain Fraud Analytics

Anomali Copilot provides powerful AI-driven capabilities for analyzing the complex data associated with large-scale supply chains. By applying multiple advanced LLM models, manufacturers can improve their ability to detect fraud, ensure compliance, and optimize supply chain operations.

Enterprise manufacturers often work with extensive networks of suppliers, sometimes numbering in the hundreds or even thousands. Managing these supplier relationships and ensuring that all transactions are accurate, compliant, and fraud-free is a significant challenge. Even with sophisticated enterprise resource planning (ERP) systems, keeping track of every detail related to suppliers, inventory, and compliance can be overwhelming, manual, and error-prone. Supply chain fraud, such as billing discrepancies or misreported inventory, can substantially increase operational costs and expose manufacturers to regulatory risks.

Discover More About Anomali

Get the latest news about Anomali's Security and IT Operations platform,

Use Case

Copilot for Detecting Voter, Unemployment, and Medicare Fraud

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Use Case

Applying Copilot to Mitigate Employee-Related Geopolitical and Cybersecurity Risks

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Use Case

Empowering Governors: Proactive Measures Against Foreign Cyber Threats

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.